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The equations of the laminar boundary layer on sharp flat and axisymmetric 
bodies are considered for high flight Mach numbers M. For the flat Plate, 
similar equations have been studied by Shen [ 1 1 and Lees 12 1. Criteria 
for the extent of the influence of the boundary layer on the outer in- 
viscid flow are established for M>>l. For thin bodies, conditions for 
the similarity of the flows are determined. 

1. Let (x, y, $) be the curvilinear coordinates, where y represents the 
distance normal to the body, x the distance from the nose along the body 
surface, and $ the meridional angle. Let II and v designate the x and y 
components of the velocity, respectively, r the radial distance from the 
axis of symmetry, and R the radius of curvature of the body profile r = 
rw(z). The components of the velocity-deformation and stress tensors then 
have the form (3). (4): 

(1.1) 

e xp = eYIP = 0, sin 0 - ar 
- ax ’ 

COSfl=~ 
ay 

PXX =-p+-tdivV+2pe,, 
PYY 

=-p+hdiv~V+2~c,, 

PW =-p++divV+2~e(pv,, 
PXY = Irexy, pxq = py, = 0 

Here V is the velocity vector, and p and x are the coefficients of 
viscosity. Denoting the unit vectors in the directions of z, y, and $ by 
k k x, y, and k+, we obtain: 
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Px = k,P,, + k,Px,, r+,=k,P,,+k,P,,, Pi = kvp,,, V = k,u + kyU 

ak 
x- ky ak, 
ax -77 a9 

a k, a k, a k, ak, 
-=kk,sinO, -~=a~=~=0 

ay 
(1.2) 

ak k 
Y = 2 

ak 
-..f! = k, cos 0, 

ak 

ax R 1 a? 2=--k sine-k 
a9 x Y costl 

The laws of conservation of momentum, energy and mass, applied to a 
differential fluid element, yield the equations: 

(1.3) 

+&[r(l+$)pv.V]+&[(l+g)p,.V] 

$+divpV=!$+ (1.5) 

(1.4) 

In these equations p, c, i, and u represent density, internal energy, 
enthalpy, and Prandtl number respectively. 

With the aid of (1.3). (1.5) and the obvious equality 

de di 1 dP E div V z~.&----- p 
P dt 

the equation (1.4) can be transformed into 

(1.6) 

Substitution of (1.1) and (1.2) into (1.3) and (1.5) leads to the ewa- 
tlons of motion of a viscous, heat-conducting gas in curvilinear coordi- 
nates in an expanded scalar form. In the limit r + m, these equations 
transform into the equations of two-dimensional flow. Let the thickness 
ratio and length of the body be of the order of @ and 1, respectively, and 
let the region in which viscous effects are significant have the dimension 
8. Then, 

x- 1, y-6, u=v,, v’uVw8/ 1, r-PI+6 

Subscripts OD and w refer to the values in the undisturbed stream and at 
the body surface respectively. 
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We will a5sume that 6/l << 1, l/R << 1. Then, using customary estim8tes 
of relative magnitudes and neglecting terms of the order 6/l + l/R) (6/l), 
the equations (1.31-(1.6) of motion 8re transformed into: 

(1.7) 

(1 .8) 

pr” 

w"~4 o I WPV) ---~ F 
dX ay 

(I.3 

(1.10) 

Here w = 0 corresponds to the two-dimension81 c8se and v = 1 to the 
axisymaetric c8se. We will postulate 

cr * n 
-=l.-J f , P+?, 
KXJ t ) e = const 

co pea pen 
(1.11) 

We will assume that coolfng, if any. will not change the order of 

magnitude of the temperature in the boundary layer.* Then. designating 

the order of magnitude of the shock angle at the nose by a, in this layer 
we will have 

Let & represent the flux of mass crossing the plane x = 1. which is 

intercepted by the bow shock wave, and $w the influx of mass into the 
boundary layer. Then 

Clearly, whenever s/l << 1, the ratio $w/$O is Small and there mUSt 

exist 8 region of flow where the influence of viscosity becomes insigni- 
ficant:+ It follows therefore that 

* When u = 1, M, >> 1 and i I = 0 in the two-dimensional case 

** In the two-dimensional c8se this fact has been established by 
Stewartson 15 1 on the basis of the solution of equations C1.71-(1.3). 
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On the basis of (1.121, the inertial and 

the order of 
viscous terms in (1.7) are of 

2 Pco1”,2 2P (8 + 18)’ -- 
x-l 1 

cc2 (8 + PI)’ _ 
(x - 1)C 

respectively. In the viscous layer the 

the order of unity so that 

n V&y_, Ma2” 

6% 
(6 + BQV 

ratio of these terms must be of 

(1.13) 

From (1.8) it then follows 

where hp is the pressure drop across the boundary layer. 

In this manner, equation (1.8) can be altogether neglected in the 

viscous region and equations (1.7), (1.9)) and (1.10) will represent 

Prandtl’s equations for compressible gas generalized to the case of axi- 

symmetric flow. When 6/rw << 1. we may set r = rI(x), and these equations 

take on the generally accepted form (6) with v = 1. 

Let us introduce the parameter K= 8/p 1, which characterizes the 

relative influence of the boundary layer on the flow in the inviscid 

region. (When K<\ 1 the influence of the boundary layer is negligible in 

comparison with the influence of the body itself; when K >> 1 the bound- 

ary layer plays the dominant role in shaping the outer flow.) 

It follows from (1.13) that 

K- 
x - 1 

i > 

‘Iz(n+l) 

’ 
xz - 

2 
M 

03 (1.14) 

In this manner, the influence of the boundary layer on the outer flow 

depends only on the relationship between the parameters* x and Ms. 

Through equation (1.14) the cases 

X Mcop M,p), McoP 

l The present parameter x differs from that in [ 1 1 and [ 2 1 onLy by a 

constant multiplier. 
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Simultaneously, the condition 8/l << 1 will automatically be satisfied 
for arbitrary bodies in the first case, and for thin bodies for the other 

two cases. For the case K >> 1, the parameter K together with M-B no 
longer represents the determining factor and is replaced by K1 = (8/l 

because it is the interaction between the boundary layer and the Mach cone 
which emerges as the dominant flow phenomenon. 

From (1.14) it follows that RI x/ (1 + K,) and with 6/l << 1 we must 
have K1 << M,. This last case includes the flow around the flat Plate 
12 I. [5 1 when ““,/3<< 1. 

Analysis of all possible combinations leads to the following general 
formula, which contains as special cases those just discussed: 

In the inviscid region the flow is described by equation (1.8) without 
the viscous terms, by equation (1.10) and by the adiabatic energy equa- 
tion in which [ 7 1 we set u = V, when the body is slender. 

2. As in Section 1, let us assume that the flow between the body and 
the bow wave is divided into the viscous and the inviscid regions by the 
sharp boundary r = ra (L), which must be determined by the simultaneous 
solution of the appropriate equations in both regions. This latter assump- 
tion is well borne out when M, >> 
(cone) with u = 1 and K = 1.4 

Here C$ is the Blasius variable and the subscript refers to the quanti- 
ties at the dividing surface. The edge of the boundary layer corresponds 

1. For instance. for the flat plate 

W&M,2 - 0.34M,2 (1 - 1+)] 

to c = 4.3 5.3. where U/U = .97 .995. It is clear that changes of t 
within these bounds correspkd to small changes in y with the order of 
magnitude given by h y/y z/(K - l,&*. Analogous results we;;,;btained 
by Stewartson 15 1 for the case of pressure variation p 

Cl(W) 
Q0= + 0, + 

. 

Let us introduce the dimensionless quantities 

v” = V, (p”, + B) 

Y + rlI) 
yo= I(BIY+p). rO=l(B1+8) , x0==+ 

Also, let us set p = p/p, and Ti = T/T, in the inviscid region, and 
u* = a/v and i2 
then bec&e 

= 2d(K - l)i_ M,2 in the viscous region. The equations 
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(2.1) 
au0 au0 @r,iJ aP0 

” z. ’ p’vo -F. dxo” ‘: - 8% P 

a PO a PO -_ 
ax0 p,x + Uo z. pIx = 0 

in the inviscid region, and 

xr0 

in the viscous region. 

The continuity equation 

The boundary conditions 

remains unaltered. 

at the shock wave have the form 

2 
- rS2 - 

PO = x + 1 . . 

xe2po 

h-l) 1 
.A_ 

(x + 1) 82rlo’2 

(x+1)%82 p1 = 2 + (X __ 1) @Are012 

2 02r_,‘2 - 1 
T1Zpl’ v. = - x+1 mi2r.o,2 - rwo’ at r. = rao ho) 

where r (x) represents the shape of the shock wave. 
l 

At the divid i 

112 = 1 

ng surface between the two regions, r0 = rOa 

VOI = 1’02, i2=2T1/(x-l)Mz at r0 = r&0) 

Here uO1 and 

and viscous reg i’ 
vu2 correspond to the velocity components in 

ons respectively. At the body surface dimens 

ary conditions read: 

112 = vg = 0, 
a& 

i2 = i, (lo) or aye - = A(zo) at y=O 

(2.3) 

So). we set 

(2.4) 

the inviscid 

onless bound- 

(2.5) 

With the exception of the last of conditions (2.4), all the equations 

and all the boundary conditions contain only the two flow parameters x 

and M,@ (in addition to the dimensionless body profile and wall tempera- 

ture variation) because 6 itself depends on x and U-p. The last condi- 

tions (2.4) contains M, alone. However, this condition states that 

27’1 1 
iz= (X_l)ML - (v_ - 1) ML + (” + @)” at r0 = r&x0) (2.6) 

Within the boundary layer i2 = 1. Therefore, the decisive role in the 

determination of the temperature profile, and hence of the other viscid 

and inviscid quantities, is played by the processes of dissipation and 

heat conduction, and with respect to the overall formulation of the 
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problem the last of conditions (2.4) is immaterial. 

We can thus put forward the following similarity rule for the flow of 
a viscous heat-conducting perfect gas around slender bodies at NW>> 1. 

For bodies with similar shape rO(xO) = r,,(x)/@ 2 and similar dimension- 
less wall temperature distributions i,(t,) or x(x,) in (2.5). the dimen- 
sionless quantities po, pi, tto, u. are functions only of the dimensionless 
coordinates x0 and ~6, and of the parameters x and Nw/3. Furthermore, the 
dimensionless shock shape r 

depend only on x and M-p. 
+o (x0) and edge of the boundary layer r,~(sof 

When the flow field about an arbitrary body is known for a given set 
of conditions, it is possible to compute the flow field under different 
conditions around a body obtained by affine transformation from the 
original body subject to the conditions M,p = con&, x= cons& 

The known [8 1 hypersonic similarity rule for inviscid flows emerges 
as a special case of the proceding rule when x << M,@ (1 + N-6) i.e. 
when j?l << 8. 

When & >> 8, the parameter MpDp becomes unimportant and the flow is 
determined by x. 

It should be noted that the similarity in the boundary layer is dis- 
turbed near its outer boundary where [ (K - I)/2 1 NW2 (1 - it’/w~~) 1, and 
consequently the ratio T/T8 is of the order of unity (even though it 
exceeds unity in magnitude). In this region we cannot neglect condition 
(2.6). Furthermore, the ratio (8p/dy)/(~?p/dy)~ (where the subscript 1 
refers to the inviscid region) is on the order of Ts/T 1. Strictly 
speaking, this means that the system of equations of the boundary layer 
should be supplemented by equation (1.8) without its viscous term. How- 
ever, as discussed earlier, the relative size of this zone is small, and 
hence its influence on the overall flow is unimportant. 
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